
1993

NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

EVALUATION OF THE EFFICIENCY AND FAULT DENSITY OF SOFTWARE
GENERATED BY CODE GENERATORS

Prepared by:

Academic Rank:

Institution and

Department:

MSFC Colleague:

NASA/MSFC:

Office:

Division:

Branch:

Barbara Schreur, Ph.D.

Associate Professor

Texas A&I University

Department of Electrical

Engineering and Computer Science

Kenneth S. Williamson

Astrionics Laboratory
Software Division

Systems Engineering

XL





Introduction

Flight computers and flight software are used for GN&C(Guidance,
Navigation and Control), Engine Controllers and Avionics during

missions. The software development requires the generation of a

considerable amount of code. The engineers who generate the code make

mistakes and the generation of a large body of code with high

reliability requires considerable time.

Computer-Aided Software Engineering (CASE) Tools are available

which generate code automatically with inputs through graphical
interfaces. These tools are referred to as code generators. In theory,

code generators could write highly reliable code quickly and

inexpensively. The various code generators offer different levels of

reliability checking. Some check only the finished product while some
allow checking of individual modules and combined sets of modules as

well. Considering NASA's requirement for reliability, an in house

comparison of the reliability of automatically generated code and of

manually generated code is needed.

Furthermore, automatically generated code is reputed to be as

efficient as the best manually generated code when executed (2). In
house verification is warranted.

Evaluation of CASE Tools

A software project of suitable complexity has yet to be provided

for evaluation. When delivered, in the form of hardware and software

requirements, this project will lead to a segment of software with

i.

2.

3.

4.

a length of at least 2000 lines.
a minimum of three levels of hierarchy.

one level having a minimum of two routines.

minimal complexity.

The plan is to develop the software package using two developers

each using a CASE Tool and standard methods (4). Two candidate CASE

Tools are ASTER and MATRIX X.

CASE Tools are rigid in how they generate programs. They may, for

instance, make extensive use of nested ifs rather than case statements.

In some applications, this rigidity may produce inefficient code

outright or may not mesh well with the characteristics of the compiler
thereby causing inefficient execution. The generated code will be
examined for such characteristics and the effects of any such

characteristics will be investigated.

The spiral model of the software process is characteristic of CASE

Tools. They also allow program changes without using patches because

the code is regenerated as an internally consistent whole (1).

Additionally, the blocks of code in the CASE Tool libraries are

reputedly highly reliable. The principal question is whether a

combination of many such blocks retains the high reliability or whether

the way they interact is capable of producing faults (2). The generated
code will be tested for the existence of faults as the modules are

completed, if that is allowed by the CASE Tool. This will be followed

by testing of the completed segment.

The metrics selected are those contained in MM 8075.1A (3), which

may be tailored. A database will be developed to serve as a collector
of the measures. These measures will be provided by metrics generating

tools available in the public domain and by tools to be acquired for

XL-I



this project. The metrics will include the following:

i.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Software size: The number of lines of code that must be

maintained.

Software Staffing: The number of software engineers and

immediate supervisor involved in the development.
Requirements Stability: The total number of requirements

that must be implemented.

Development Progress: The number of successfully completed
modules.

Computer Resource Utilization: Percent utilization of CPU,

disk, and I/O channel.

Test Case Completion: Percent of successfully completed test
cases.

Discrepancy Report Open Duration: The time between the

report of a problem and the resolution of the problem.

Fault Density: The number of open Discrepancy Reports and
the total defect density normalized by the software size
over time.

Test Focus: Percentage of problem reports resolved through
software solutions.

Software Reliability: Probability that the software works
under specified conditions for a specified time.

Design complexity: Number of modules that have a complexity
greater than a predetermined number.

Ada Instantiations: Size and number of generic subprograms

developed and the number of times they are used. (For C++,

the number of object invocations.)

In addition to the metrics, the effectiveness of the CASE tools

will be evaluated using the following criteria:

i.

2.

3.

4.

5.
6.

7.

8.

The languages available for code generation.

The ability to test modules as they are developed both

individually and as part of the system.

The language the code generator is written in.
The libraries, including icons, that are available.

The ability to import code from other files and/or projects.
The ability to trace variables through the code and

determine the effects they have.

The documentation of the software created by the code
generator.

Check on the ability of the tool to "reverse" engineer a
section of code for reusability.

A requirements document and test procedures will be developed for
typical flight modules.

The original plan was to begin training on ASTER starting with

week five. ASTER has not yet been delivered. When it became apparent

that ASTER would not be delivered, training was started on MATRIX X.

Training in MATRIX X is progressing and should be completed by week ten.

Draper Labs will conduct a two week training session on ASTER in

October, 1993 so training on ASTER cannot begin until then.

Future Analysis

Recommendations for future work include the following:

I. The use of at least three Code Generators using non-trivial

complex GN&C source code or the equivalent.

2. Analyzing the source code with respect to McCabe complexity,

fault density (per i000 Lines of Code), and efficiency.

XL-2



3.

4.

Performing Software Verification and Validation (V&V).
Recommending V&V Methodology and Work-Arounds for Software

Source Code Generators.

Conclusion

The project is ambitious. Training is required with several tools

as they become available. This report is a delineation of the project

and a substantial portion of the training. It is true that a great deal
about CASE Tools and metrics has been learned by this Summer Fellow.

Whether this work is continued by this Fellow or another, this report

provides the basis for an evaluation of the CASE Tools.

References

1. Billmann, L., Mirab, H. and Winkler, U., "CASCSD-CASE Tools",

Measurement and Control, Vol. 25, June 1992, pp. 137-143.

2. Dellen, C. and Liebner, G., "Automated Code Generation from

Graphical, Reusable Templates", 10th IEEE/AIAA Digital Avionics

Systems Conference Proceedings, IEEE, 1991, pp.299-304.

3. MSFC,"MSFC Software Management and Development Requirements

Manual", MM 8075.1A, NASA, August 1993.

4. Williams.n, K., "The ASTER Code Generator CASE Tool Evaluation",

Internal Report, MSFC, May 12, 1993.

XL-3




